TABLE OF CONTENTS | | | Page | |------|--|------| | I | INTRODUCTION | 1 | | II | DETAILED EXPLANATION OF INFORMATION COLUMNS | 2 | | Ш | MEMBER COUNTRIES REPORTING 2003-2004 PROJECTS | 5 | | IV | REGISTER OF 2003-2004 REPORTED PROJECTS | 7 | | VI | MEMBER COUNTRIES REPORTING ON COMPLETED PROJECTS 2003-2004 | 13 | | VII | REGISTER OF 2003-2004 COMPLETED PROJECTS | 15 | | VIII | MEMBER COUNTRIES REPORTING NO WEATHER MODIFICATION PROJECTS IN 2003-2004 | 17 | #### I. INTRODUCTION As part of the activities which WMO carries out in its Programme on the Physics and Chemistry of Clouds and Weather Modification Research, a Register of National Weather Modification Projects is kept. The Register has existed since 1975 when the Seventh World Meteorological Congress agreed that an inventory of activities within Member countries related to weather modification should be initiated and maintained. Periodic reviews have all recommended that the Register be continued. The Register is providing information also of interest to number of UN programmes outside WMO. This present Register is based on information obtained from Member countries on experiments and operations sponsored by government agencies or private concerns that took place during 2003 and 2004. To assist the reader in understanding the content of each of the 12 columns used in the tabular presentation found within, detailed explanations are provided in Section II. The names of Member countries who provided the information reported in this Register are listed in Sections III. Section VII provides summaries of completed projects and Section VIII indicates which countries reported that no weather modification activities had taken place in 2003 and 2004. ____ #### II. DETAILED EXPLANATION OF INFORMATION COLUMNS ### Column 1: WMO Register No. This consists of country indicator letters (according to the ISO Standard 3166-1974) and a serial number for each project. Column 2: Objective of project, type of organization carrying it out Dev. = Development PE = Precipitation Enhancement Ext. = Extend wet period (E) = Emergency Fog = Fog dissipation (R) = Routine Hail = Hail suppression PR = Precipitation Redistribution Inc. = Increase during wet Res. = Research period Op. = Operational #### Column 3: Approximate size of project area Given in square kilometres for target and control (if any) areas. #### Column 4: Name of project Reference numbers are also quoted when supplied. #### Column 5: Location of project area In some cases where co-ordinates of several points delineating the area were given, these have been replaced by a single point at approximately the centre of the area. Towns and islands may be denoted by name; A/P = Airport. Column 6: Year project commenced and continuity Date -- year project started Every year -- indicates project has operated every year Interrupted -- indicates project has not operated every year No -- indicates project will not be continued Yes -- indicates project will be continued (?) -- indicates project status is unknown # Column 7: Nature of organization sponsoring project Indicated by abbreviations as follows: Agr. = Agricultural Muni. = Municipal Def. = Defense (P) = Private Enr. = Energy Rec. = Recreation For. = Forestry Res. = Research (G) = Government Trans. = Transportation Hyd. = Hydrological Wea. Serv. = Meteorological Column 8: Apparatus, seeding location Abbreviations are as follows: A/C = Aircraft Temp. = Temperature #### Column 9: Agents, dispersal rates Self-explanatory. ### Column 10: Characteristics of clouds treated, seeding criteria LWC = Liquid Water content Temp. = Temperature Obs. = Observations # Column 11: Active period during reporting year Months of activity are inclusive. Jan = January July = July Feb = February Aug = August Mar = March Sept = September Apr = April Oct = October May = May Nov = November June = June Dec = December # Column 12: Documentation "EIS" indicates that an environmental impact study has been made; "C/B" indicates that a costs and benefits analysis has been made. # MEMBER COUNTRIES REPORTING 2003-2004 PROJECTS | | Page | |------------------------|------| | AUSTRALIA | 7 | | AUSTRIA | 7 | | BULGARIA | 7 | | CANADA | 8 | | CROATIA | 8 | | FRANCE | 8 | | GERMANY | 9 | | GREECE | 9 | | HUNGARY | 9 | | MALAYSIA | 10 | | MACEDONIA, REPUBLIC OF | 10 | | MOROCCO | 10 | | RUSSIAN FEDERATION | 10 | | SERBIA AND MONTENEGRO | 11 | | UZBEKISTAN | 11 | | ZIMBABWE | 11 | | | AUSTRALIA | | | | | | | | | | | |-------|------------------------------|-------------------------|---|---|---------------------------------|---------------|--|--|---|--|--| | AUS-1 | PE
Inc.
Op. | Target area
8233 km² | Tasmanian
Area cloud
seeding
operation
2003 (TASCO
2003) | Tasmanian
central
highlands | 1998 Sept-
Every year
Yes | Energy
(G) | Aircraft acetone
burner seeding
in cloud at –
10°C level or
cloud tops
warmer than –
10°C. | Agl at 383
g/hr 14.16 kg
/year | Layer clouds with bases colder than 10°C and tops colder than 0°C but warmer than -20°C. Supercooled water content 0.1 g/m². Cloud depth >1/2. Wind speed < 7.5 kt cloud top temp colder than -5°C. | April-Nov. 28
suitable
seeded days | Evaluation based on results of 25000 ft joint HEC/CSIRO randomized. Trial of 79-83 inclusive. No documents EIS – Yes C/B Yes | | | AUST | RIA | | • | • | • | | • | | • | | | | PE
Inc.
Op. | Target area
1800 km2 | Hail test
project -
Styria | 46o 30' –
47o15' N
15o30' – 16o00'
E | 1985
Every year
Yes | Agr (P) | 3 Aircrafts
acetone burner
and pyrotechnic
flare
cloud base | Agl solution
11 liter/hr
Total
consumption
803 l | Convective clouds with bases colder than 10°C and tops colder than –20°C. No microstructure measured, subjective criteria, regional weather forecast and C-Band raider | May – August
2003
24 days | Evaluation based on
historical records Crp
damage and hail pads.
Evaluation available.
Documents to WMO
EIS –No
C/B No | | | | | | | | BU | ILGARIA | | | | | | BG-1 | Op.
Res.
Hail
Supp. | 16683
km² | Bulgarian Hail
supresión
project | NW Bulgaria
43° 20– 44°0
22°30E –
24°40E
South Bulgaria
42°-42°35'N
24'00 – 26°30'E | 1969
Interrrupted
Yes | Agr (G) | Rocket-based pyrotechnic flares for in cloud seeding | AgI
82 kg/rocket | Convective clouds;
bases warmer than
+10°C and tops
colder than –20°C:
Seeding criteria
based on radar echo,
cloud heights and
reflectivity. | May-Sept.
36 days | Evaluation based on comparison with historical records crop damage. Evaluation document done available to WMO. EIS-No C/B-Yes | | | | | | | | | | | | | <u> </u> | |-------|----------------------------|--|---|---|---------------------------|--|--|--|---|-------------------------------------|--| | CAN-1 | Op.
Hail | 26,000
km ² | Alberta hail
suppression
project | Province of
Alberta
(Lacombe to
High River).
Priority given to
cities of
Calgary and
Red Deer. | 1996
Every year
Yes | Ins.(P) | 3 aircrafts generator with acetone burner pyrotechnic flare. Seeding cloud based and cloud top between –5°C and –10°C on the upshear side of convective cells. | Agl. Flares:
one 20g every
5 sec.
Annual
consumption
173.35 kg. | Convective clouds; bases colder than +10°C and tops colder than -20°C: Seeding criteria: radar defined cells with max. reflectivity 35 dbz, heights above -5 and are considered to be potential hail threat and urban or populated area | 1 June – 15
Sept. 27
days. | Evaluation based on comparison with historical records. Document available. EIS-No C/B-Yes | | | | | | ı | | С | ROATIA | | | • | | | CR-1 | Hail
supp
Op. | Project
area
24100 km ² | Hail
suppression | North Croatia,
between Sava
and Drava
rivers | 1976
Every year
Yes | Agr (G)
Insurance
(P)
company | Ground rockets. Generators with acetone burners. Release is in ground -8oC to -12oC | AgI
10 kg /day
610 kgs | Convective, clouds warmer than +10°C and tops colder than -20°C. No microstructure measured Top > hight of -28oC Hight of 45dbz > hight 0oC + 1.4 km | May - Sept.
2003
153 days | No evaluation Comp historical records Hail pads Documents available EIS – No C/B-No | | | " | | • | 1 | | F | RANCE | | | | | | FR-3 | Hail
supp
Res.
Op | Target
area
60000
km²
Control
area
420000k
m² | ANELFA
Association
Nationale
d'Etude et de
lutte contre
les fléaux
Atmosphériqu
es | Bassin Aquitain,
Bassin
Rhodanien
Vallée de la
Loire | 1952
Every year
Yes | Agr
Asso
ciation
sans but
lucratif | Ground seeding 680 generators Acetone burner Ground seeding dispersal | AgI
8 g /hours/
generators
540 kg per
year | Convective clouds. Temp warmer than +10°C and tops colder than –20°C Prévision des chutes de grêle au sol pouvant provoquer des dommages aux cultures. | 15 April –
15 October
59 days | Hail pads Doc available In WMO EIS-Yes C/B-Yes | | | | | | | | GE | ERMANY | | | | | | 3 | | | | | | | | | | | |----------------------------|-------------------------------|---|---|----------------------------|----------------|--|---|--|-------------------------|--| | Hail
Supp
Res
Op. | Target
area
4400
km² | Halgelab
wehr Hagel
forschung
Rosenheim | Mountainous to
hilly terrain from
1900 MSL to
500 MSL on
Northern Side
of Alps | 1975
Every year
Yes | County | 2 aircrafts with
acetone burner
seeding at
cloud base | Agl
6l/hour
37 kg | Convective clouds cloud base warmer than +10°C tops colder than -20°C temp.advection, vertical windspeed humidity altitude of troposphere radar echos infrared satellite photos. | April - Sept
19 days | Doc of hail fall
document planned
available
EIS-No
C/B-No | | | | | I | | G | REECE | | l | | | | Op. Res. Hail Supp | 5000 km²
Target
area | Hellenic
National Hail
suppression
project | NW Greece | 1984
Interrupted
Yes | Agr (G) | 3 aircraft.
Hail sound
canons and
sound shock
waves. | AgI
4 gr/sec | Convective and orographic clouds with bases colder than 10°C and tops colder than -20°C. Seeding criteria cloud tops higher 5 km and radar reflectivity higher than 35 dbz. | | Evaluation based on comparison with historical records, crop damage and hail pads. Doc available EIS-Yes C/B-Yes | | | | | | | HU | INGARY | | | | | | Op. | Target 13,000 km ² | NEFELA
Hail
Suppression
Associaiton | Baranya
Somogy
Tolna counties | 1991
Every year
Yes | Agr (G)
(P) | 141 ground generators acetone burners. | AgI
8 gr/I
Total
consumption
230 Kg | Convective clouds with bases warmer than +10°C, tops both warmer and colder than -20°C. No microstructure measured. Hail forecast | May-Sept.
40 days | No evaluation
No doc.
EIS-No
C/B-No | | | | | | | MA | LAYSIA | | | | | | | | | | | | | | | | • | | |------------------|---|---|---|--|---------------------------|----------------------------|--|---|---|--|--| | MAL-1 | Op.
PE
(E) | Whole
country
No
control
area | Drought
operation | Whole country | 1997
Every year
Yes | Wea.
Serv.
(G) | In cloud
seeding with
liquid spray
from 2 A/C.
Seeding in
moderate size
cumulus (tops
10-1200 feet) | NaCl, 200 kg
per day
Total annual
consumption
6,000 kg | with bases warmer than +10°C, tops | Periods from
27 Feb to 2
April 2003; 8
May to 6 June
2003; 16 Sept
to 6 Nov 2003
58 days | No evaluation provision
EIS-No
C/B-No | | | MACEDONIA, REPUBLIC OF | | | | | | | | | | | | M
a
-
1 | Op
Hail | 8000 km2 | Hail
supression
project | Whole country | 1971
Every year
Yes | Wea
Ser
(G) | Rockets
In cloud seeding | Ag I
400 gr
Total
58.4 kg | Convective clouds with with bases warmer than +10°C, tops colder than 0°C . Criteria: Hzmax > H0° Hzmax - 25 dbz > H ₋₁₄ ° H echo top > H ₋₂₈ ° | May -
September
20 days | Comp with historical
records
Doc available
EIS – No
C/B - No | | МС | OROCCO | | | | | | | | | | | | MOR-1 | PE
E
Prec
Inc.
Res.
Op. | Target
14,300
km ² | ALGHAIT | Haut Atlas Between 31°- 25° 32°50 N and 5° 25 and 7° 25W | 1984
every year
Yes | Wea
Serv (G) | Ground seeding
Cloud top
material
15 generators
2 aircrafts | Agl 16g/l
acetone.
Total
consumption
80 kg.
Propane
1 btl of 35
kg/10 hrs
total: 500 btls | 0°C but wamer than – 20°C. | 1er Nov 2002
– 30 April
2003.
30 jours | Evaluation with historical records. Document available EIS-Yes C/B-Yes | | | | 1 | | • | | RUSSIAN | N FEDERATION | | | | | | RF-1 | PE (E) Op. Dev Res Water supply PR Fire sup | Target
90,000
km ² | Regulation of precipitation Airplane laboratory | Republic Saha | 1986
Every year
Yes | Agr (G)
Met Serv
(G) | rockets,
generator with
pyrotechnic
flare. Release
of seeding is
cloud base and
in-cloud | AgI
50 kg/year. | Convective clouds with base colder than +10°C, top temp colder than –20°C T°br < -10°C and Δ h> 2km | April-
September
97 days | Comparison historical records. Crop damage Hail pads Doc available in WMO. EIS-Yes C/B-Yes | | | | | | | | SERBIA AN | D MONTENEGRO | 5 | | | | | |-------|--|----------------------------------|---|---|----------------------------|-------------------------|--|--|---|-------------------------------------|---| | SM-1 | Hail
Supp
Op | Target
Area
77 134
km² | Hail supp
system in
Serbia | The territory of
Republic of
Serbia | 1967
Every year
Yes | Agr (P)
Wea.
Serv | Rockets, In
cloud seeding
from -4°C to -
12°C. | AgI
8.36 kg/units
4065.2 kg | Convective clouds coldler than +10°C top temperatures colder than -20°C. Radar reflectivity log>4.5. Max radar reflectivity height above 0°C. Height of increase radar echo above -14°C and radar echo to height above -28°C. | 15 April –
15 October
54 days | Comparison historical records. Crop damage Doc available in WMO. EIS-No C/B-Yes | | UBI | EKISTAN | | | | | , | | | | | | | 1-ZN | Hail
Supp
Op | Target
area 7380
km2 | Hail prevention of agriculture of crops on the teriitory of Rep of Uzbekistan | Namangan,
Andijan,
Samakand,
Kashkadarya,
Surkhandarya
districts | 1969
Every year
Yes | Agr
Gov | Rockets Pyrotechnic flare In cloud seeding | Ag I
20gr/km ³
56.7 kg | Convective clouds Temp at cloud base above +10°C. Top below -20°C Measured cloud microstructure. | 1 April
31 Aug.
37 days | Comparison with
histrorical records
Doc yes
EIS-No
C/B-Yes | | ZIM | 1BABWE | | | | | | | | | | | | ZIM-1 | PE Water supply aug Increase precip During wet period Op | Target
area
390 757
km2 | National
cloud seeding
operation
(NASCO) | Harare | 1968
Interrupted
Yes | Wea Serv
Gov | Aircraft Potassium/ Sodium, lithium carbonate/ magnesium oxide flares (burner) | NaCl 19% of
flares
KCl 65%;
liCO3 1%;
MgO 15%. | Convective clouds Temp at cloud base above +10°C. Temperature, updraft, type of clouds, height of clouds | Dec-March
70 days | Evalution carried out
before project
implementation
Doc yes
Not available
EIS-No
C/B-No | # MEMBER COUNTRIES REPORTING ON COMPLETED PROJECTS | | Page | |--|------| | FRANCE | 15 | | MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF | 16 | | MOROCCO | 16 | | UZBEKISTAN | 16 | | Bassin Aquitain – Bassin Rhodanien – Vallée de la Loire 60000km² South western France. J. Applied 60000km² 4 départements du sud-est de la France 4 départements du sud-est de la France Hilly terrain. Target area. 60000km² Bassin Aquitain – Bassin Cumulus clouds 51 years 9 départements du sud ouest de la France with silver iodide ground burners in South western France. J. Applied meteo, 37, 1588-1599 Cette evaluation of hail suppression project with silver iodide ground burners in South western France. J. Applied meteo, 37, 1588-1599 Cette evaluation of hail suppression project with silver iodide ground burners in South western France. J. Applied meteo, 37, 1588-1599 Cette evaluation porte sur l'étude | LOCATION AND TERRAIN | PURPOSE AND DURATION | AGENT AND ALTITUDE OF SEEDING | REFERENCES TO PUBLISHED
RESULTS | COMMENTS AND CONTACT FOR INFORMATION | |--|--|----------------------------|--|--|--| | Bassin Aquitain – Bassin Rhodanien – Vallée de la Loire 60000km² Cumulus clouds 51 years 15 April – 15 October Fixed area definition. 9 départements du sud ouest de la France 2 départements du sud-est de la France Hilly terrain. Target area. 60000km² Mesure physique des chutes de grêle à l'aide d'un réseau de 1086 grêlimètres installés sur la zone cible. 1 jour unité expérimentale journées ensemencées en moyenne pour chaque départment Seeding period : 8 h/day Etude des correlation entre : quantité de substance active dispersée dans les cellules à grêle par générateur au sol n e suit pas la procedure classique par triage au sort utilize en mofication du tps. Cette evaluation of hail suppréssion project with silver iodide ground burners in South western France. J. Applied meteo, 37, 1588-1599 Dessens J. and R. Fraile, 2000. The effect of silver iodide seeding on hail stone size distribution. J. Weather modification, 32, 26-30. Dessens J. and C. Berthet and J.L. Sanchez. 2003, The French hail prevention programme ANELFA: Results updating and proposal for duplication: 8 th WMO scientific conference on Wea Mod | FRANCE | | | | | | diamètre supérieurs à 7mm 2003) WMO No. 39 pp 295-298. 1% signification statistique | Bassin Aquitain – Bassin
Rhodanien – Vallée de la Loire | Cumulus clouds
51 years | Fixed area definition. 9 départements du sud ouest de la France 2 départements du centre de la France 4 départements du sud-est de la France Hilly terrain. Target area. 60000km² Mesure physique des chutes de grêle à l'aide d'un réseau de 1086 grêlimètres installés sur la zone cible. 1 jour unité expérimentale journées ensemencées en moyenne pour chaque départment Seeding period : 8 h/day Etude des correlation entre : quantité de substance active dispersée dans les cellules à grêle et intensité des chutes de grêle (nb des grelons de plus 7mm diamètre) 42% diminution du nombre de grêlons de diamètre supérieurs à 7mm | evaluation of hail suppression project with silver iodide ground burners in South western France. J. Applied meteo, 37, 1588-1599 Dessens J. and R. Fraile, 2000. The effect of silver iodide seeding on hail stone size distribution. J. Weather modification, 32, 26-30. Dessens J. and C. Berthet and J.L. Sanchez. 2003, The French hail prevention programme ANELFA: Results updating and proposal for duplication: 8 th WMO scientific conference on Wea Mod (Casablanca, Morocco, 7-12 April | générateur au sol n e suit pas la procedure classique par triage au sort utilize en mofication du tps. Cette evaluation porte sur l'étude des distributions dimentionnelles des grelons en function du taux d'ensemensement. Dr Claude Berthet ANELFA 52 rue Alfred Duméril | | MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF | | | | | | | | | | |---|--|---|--|--|--|--|--|--|--| | Hail suppression Cumulus 31 year May to September Agl Target only. Fixed area: Hilly terrain. 8000 km2 Radar reflectivity | | PR | | | | | | | | | | | • | | | | | | | | | Precipitation Augmentation rainfall and snow. Orographics cumulus, stratiform and system frontal clouds 19 years 1 November – 30 April. | Agl. lodure de sodium + acetone G/B and airborne seeding from 15 G/B generators. 3000 m altitude. 200 to 260 km longueur de la trajectoire Zone clble. Target zone. Radar. LWC > 0.1/m3 sur 1 distance de 10 km. ACP, MRPP, regression linéaire. Augmentation des precipitations: 17% statistique. | Dr Grana Laidi
Direction de la Météorologie
Nationale
BP 8106 Casa-Oasis
CASABLANCA | | | | | | | | | | Hail suppression Cumulus 31 year May to September Agl Target only. Fixed area: Hilly terrain. 8000 km2 Radar reflectivity Precipitation Augmentation rainfall and snow. Orographics cumulus, stratiform and system frontal clouds 19 years | Hail suppression Cumulus 31 year May to September Agl Target only. Fixed area: Hilly terrain. 8000 km2 Radar reflectivity Precipitation Augmentation rainfall and snow. Orographics cumulus, stratiform and system frontal clouds 19 years 1 November – 30 April. Agl. lodure de sodium + acetone G/B and airborne seeding from 15 G/B generators. 3000 m altitude. 200 to 260 km longueur de la trajectoire Zone clble. Target zone. Radar. LWC > 0.1/m3 sur 1 distance de 10 km. ACP, MRPP, regression linéaire. Augmentation des precipitations: 17% | | | | | | | | | Hail prevention of agriculture crops of the territory of Rep of Uzbekistan. | Hail suppression. Cumulus clouds: 34 years from 1 April to 31 August Agl seeding Target only. Fixed area. Mountainous terrain. 7380 km2 target area. Precipitation gauges 58 Radar reflectivity, riding round territories caused by hail to fix the size of hailstones and defining of damage. | Imamdjanov Kh. A Parametical model of hailstorms clouds /SANI. 1982. Issue 100 (181)pp. 14-20 Djuraev A.D. Imandjanov Kh. A., NazarovB. Sh. Use of radar data in calculation of economical effectiveness of hail prevention activity /SANI 1988 – Issue (126 207) pp.83-86. Imandjanov Kh. A. Kamalov B.A. Weather modification in Uzbekistan SANIGMI 2001 p.120 | The administration on Weather Modification of Glavgidromet of the Republic of Uzbekistan, Taskent. Experimental Unit: Duration of 2-30 minutes, maximum 1.5 hour; Conditions if the unit is seedable – RL should be 10 -8 cm -1, vertical extent of the zone in the cloud with reflectivity 10-9 cm should be 2.5 km and more; Total number of seeded units is 128, including 68 on hail prevention and 60 on hail interruption. Standard seeding period was from 2 minutes to 1.5 hours; Transformation for each test – decrease of radar reflectivity and geometrical characteristics of cloudiness. | |---|--|--|---| ## VIII. MEMBER COUNTRIES REPORTING <u>NO</u> WEATHER MODIFICATION PROJECTS IN 2003-2004 Algeria Argentina Bahrain Barbados Belize Benin, République du Brunei Darussalam Colombia Costa Rica Cote d'Ivoire Cyprus Denmark Dominican Republic Ecuador Egypt Estonia Finland Gambia Georgia Guyana Hong Kong, China Iceland India Japan Kazakhstan, Republic of Kyrgyz Republic Liban Lithuania Maldives Malta Mauritius Mexico Myanmar Ti Ni ii The Netherlands New Zealand Niger Papua New Guinea Pakistan Paraguay Peru Poland Qatar Republica Dominica Salvador El Saudi Arabia Singapore Slovakia Slovenia South Africa St Lucia Sudan Sweden Switzerland Trinidad and Tobago Turkey Uganda, Republic of United Kingdom Uruguay USA, NOAA